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1. INTRODUCTION

DEFINITION 1.1. Let -co <a<b< co. Then CM[a,b] denotes the set of
all functions with domain [a, b] that are continuous and strictly monotonic
there.

DEFlNITION 1.2. Let -co < a < b < 00, and letfE CM[a,b]. Then, for each
positive integer n, each n-tuple x = (XbX2," .,xn) where a <, XJ"::;. b (j =
1,2, . ."n), and each n-tuple q = (Qbq2," .,Qn) where qj > 0 (j = 1,2, . .. ,n) and
2:J=1 qj = 1, let Mix,q) denote the (weighted) meanf-l C~:j=l qj j(xj)}. f'or
the sake of brevity, we say that x and q are admissible if, for some positive
integer n, they are n-tuples satisfying the conditions specified above.

Remarks. (1) For a detailed treatment of these generalized means, see UJ,
Ch. III. (2) Clearly, a <, Mf(x,q) <, b holds for all admissible x and q. (3) If
0< a < b, ql = q2 = ... =qll = l/n, and J(t) is (-1, logt, or t, then M/x,q) is
the ordinary harmonic mean, geometric mean, or arithmetic mean, respect
ively. (4) Iff, g E CM(a,b] and if g is increasing, then Mix,q) <, Mlx,q) for
all admissible x and q ifand only if the composite function g 0/-1 is convex on
[f(a),j(b)](or [f(b),j(a)]). (Cf. [1], p. 75.)

Suppose that one is given anfE CM[a,b] and that one has to compute
MJCx,q) for various admissible x and q. Since rounding-off errors may be
involved in such computations, one is prompted to ask if, given an E: > 0,
there exists a polynomial with rational coefficients, whose restrictionp to [a, b]
belongs to CM[a,b], such that IMix,q) - Mp(x,q)j < E: for all admissible
x and q. Theorem 2.2 of this paper asserts that such a polynomial exists. It
turns out that Theorem 2.2 also proves that a certain metric space is separable.

I A lecture delivered at the Second Symposium on Inequalities at USAF Academy,
Colorado, August 1967.
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(Cf. Corollary 2.1.) The main purpose of this paper is to introduce this metric
space and to analyze it in detail.

2. SEPARABILITY OF THE METRIC SPACE OF EQUIVALENCE CLASSES

First, we observe that, for the purpose of forming means, certain functions
in CM[a,b] are equivalent.

LEMMA 2.1 ([1], p. 66). ifF, fE CM[a,b], then MF(x,q) = MAx,q) for all
admissible x and q ifand only if there exist real numbers Q(; (=f 0) and f3 such that
F=Q(;f+f3·

DEFINITION 2.1. We say that functions F,fE CM[a,b] are equivalent, and
we write F,...,f, if and only if there exist real numbers Q(; (=f0) and f3 such that
F=Q(;f+f3·

We have the following obvious

LEMMA 2.2."'" is an equivalence relation on CM[a,b].

DEFINITION 2.2. If fE CM[a,b], then [f] denotes the equivalence class
containingf.

In view of the approximation problem propounded in Section 1, and in view
of Lemma 2.1, we make the following

DEFINITION 2.3. Iff, g E CM[a,b], we define the distance perf], [g]) between
[f] and [g] by p([f], [g]) = sup {IMf(x,q) - Mg(x,q)!: x and q admissible}.

Remark. The supremum in Definition 2.3 is actually attained; but we defer
the proof until the end of the paper.

THEOREM 2.1. p is a well-defined metric on the set ofall equivalence classes of
CM[a,b].

Proof. Observe that IMf(x,q ) - Mg(x,q) I .;;;; b - a for all admissible x and q,
and, therefore, 0.;;;; p([f], [g]).;;;; b - a.

p is well defined since, according to Lemma 2.1 and Definition 2.1,

IMF(x,q) - MG(x,q)1 = IMf(x,q) - Mg{x,q)1

for all admissible x and q if F,...,fand G,..., g.
Clearly, p([f], [g]) = 0 if and only if [f] = [g]. Finally, p is obviously

symmetric; and, as is easily seen, it satisfies the triangle inequality.

Next, we prove that the metric space in question is separable. It is convenient
to confine our attention to the unit interval [0,1]. We start with the following
lemma, whose proof is evident.
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LEMMA 2.3. Given f E CM[O, 1], there exists precisely one function
FE CM[O, 1] such that F ~f, F(O) = 0, and F(l) = 1.

DEFINITION 2.4. If FE CM[O, 1], F(O) = 0, and F(l) = 1, then we say that
F is canonical.

According to Lemma 2.3, each equivalence class of CM[O,l] contains
precisely one canonical function.

THEOREM 2.2. Suppose thatf E CM[O, 1]. Then, corresponding to each E > 0,
there exists a canonical polynomiaF p with rational coefficients such that
p([f], [p]) .;;;; E.

Proof. We can assume without loss of generality that/is canonical. Then
/-1 is also canonical.

If E > 0, then, by the uniform continuity ofj-l, there exists a 8 > 0 such that
If-l(y!) - j-l(Y2)1 < te if YhYl are in [0, I] and Iy! - hi < o.

Supposethatp is a canonical function such that \j(t) - p(t)j < S throughout
[0,1]. Then, as we now prove, perf], [p]) .;;;; E. Let n be a positive integer, and
let x = (XhX2'" .,xlI) and q = (qbq2," .,qll) be admissible. Then

IA1"r(x,q) - Mp{x,q)[ = If-tt qjj(Xj)}

-!{ ~ ()I I- p /;:! qjP x j J i

.;;;; Ij-l ttl qj I(Xj)} -f-ttl qjP(Xj)} [

+If-ttl qjP(Xj)} - r 1Lt qjP(Xj)}I

= If- l
{ ~ qJ!(Xj )} _/-1 [, ~ qjp(Xj )}I
J-I ,J-I,

+ !t-Ik[p-l(J, qjP(Xj »)]}

- /-1 (J[p-l Ct qjP(XJ)]}I
<tE+t€= E,

2 I.e., a restriction of a polynomial to [0, 1] that is canonical.
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n

< :z: qj!f(Xj) - p(X)I
j~l

k[p-lC~ qjP(X))] - f[rl(Jl qjP(Xj»)]/ < o.

Hence, p([f], [P]) < E.

We show now the existence of a polynomial P with rational coefficients
that is strictly increasing on [0,1] and such that P(O) = O,P(I) = 1, and
If(t) - P(t)1 < 0 throughout [0,1].

For each positive integer m, consider

BmU) == .~ f(l) (~) t
j
(1 - t)m-j,

)=0 m ]

the Bernstein polynomial of order m off Clearly, Bm(O) = 0 and Bm(1) = 1.
Moreover, Bm'(t) > 0 throughout [0,1]. In fact, a simple calculation (cf. [2],
p. 12) shows that

Bm'(t) == mmi.
l
{f(j + I) _f(l)) (m ~ I) tj(1 _ t)m-l-j.

j-O m m ]

Sincef is continuous on [0,1], there exists a positive integer n (>2) such that
If(t) - Bn(t)I< 0/2 throughout [0,1]. Let Bn(t) == :z:~~o bktk. If the bk are all
rational, we are finished. Suppose they are not all rational. Note that
o= Bn(O) = bo and that 1 = B,,(I) = bl + b2+ ... + b".

Let 01: = mino.- t.-l Bn'(t); note that 01: > o. Selectrationalnumbersa2,a3' .. .,a"
such that 0<ak-bk<min«0/4n),(or./n» (fr=2,3, ...,n), and let al = 1
:Z:~=2ak. Then

" n-I
Ib i - all = :z: (ak - bk) < -4- o.

k=2 n
Let pet) == :Z:~~1 aktk. Then P is a polynomial with rational coefficients,

P(O) = 0, P(1)=I, and throughout [0,1], IB,,(t)-P(t)I<:Z:~~llbk-akltk<

(n-1)0.(4n)-1 +(n-I)0(4n)-1 <j-o. Consequently, maxo.- t.-llf(t)-P(t)1 < o.
To prove that P is strictly increasing on [0, I], it is sufficient to show that

P'(t) > 0 throughout (0,1). But, if 0 < t < 1, then P'(t) - B,,/(t) > al - b1 =
:Z:~=2 (bk - ak) > -en - I)or./n > -or., and, therefore, P'(t) > Bn'(t) - 01:;;;' O.
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COROLLARY 2.1. The metric space of equivalence classes of CM[O,I] IS

separable.

3. THE METRIC SPACE OF CANONICAL FUNCTIONS

In this section we examine the metric space of equivalence classes in more
detail and determine a number of its properties, by showing that it is homeo
morphic to the metric space of canonical functions.

DEFINITION 3.1. If the real-valued function f is continuous on its domain
[0,1], then, for each S;;;. 0, we denote wiS) = sup {1/(xl) - l(x2)!:0,,;;;; Xl";;;; 1,
0,,;;;; X2 ,,;;;; 1, IXI - x21 ,,;;;; o}.

DEFINITION 3.2. If h is a bounded, real-valued function with domain [A,B],
we denote Ilhll = sup {ih(x)\:A ,,;;;; X,,;;;; B}.

LEMMA 3.1. Iff and g are canonicalfunctions, then

p([f], [gD,,;;;; 2wf-1(llf- g[D,

Ilf-1 - g-lll,,;;;; p([f], [gD,
and

IIf - gil,,;;;; wip([f], [gJ)).

Proof If X = (X1>X2," .,xn) and q = (q1>q2," o,qn) are admissible, then, as in
the proof of Theorem 2.2,

IMf(x,q) - Mg{x,q)l ,,;;;; If-1 {.~ qJ(Xj)J\ - f-It'.~ qjg(Xj )}/
. J-l J-I.

+ iJ-l{g[g-tt qjg(Xj))]}

-f- I{![g-tt qjg(Xj ))]}i
,,;;;; 2wf-1([li- gil),

since

and

!g[g-ICt qjg(Xj))] - I[g-{t qjg(Xj ))JI ~ iii- gil·
This proves that p([J], [g]) ~ 2wf-1(llf - gil).
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Next, let XI = 0, X2 = 1, °< y < 1, ql = 1 - y, and q2 = y. Then Mf(x,q) =
f-l{qI!(xI) + q2f(x2)}=f-l(y) and MoCx,q)=g-l(y). Consequently,
If-l(y) - g-l(y)1 < p([f], [g]) whenever °< y < 1. This proves that
Ilf-1

- g-III < p([f], [g]).
Finally, ifO < X < 1, then

If(x) - g(x)I= I/{g-l(g(X))} - f{f-I(g(X))}/ < willg-I - f-III).

Hence, III- gil < willl-I
- g-III) < wip([f], [g])).

THEOREM 3.1. The metric space ofequivalence classes ofCM[O, 1] is homeo
morphic to the metric space ofcanonical functions with distance determined by
the norm II II.

Proof, Suppose that f is a canonical function. If E > 0, then there exists a
8>°such that 2wf-1(8) < E. Ifg is a canonical function such that III-gil < 8,
then, by Lemma 3.1, p([f], [g]) < 2wf-1ClII-gil) < 2Wf-1(8) < E. This proves
that the transformationf -+ [f] is continuous at each pointf,

Next, suppose that [f] is an equivalence class of CM[O,I] where f is
canonical. Given E > 0, there exists an 'I] > °such that wi'l]) < E. If [g] is an
equivalence class ofCM[O, 1] such that g is canonical and p([f], [g]) < '1], then
by Lemma 3.1, Ilf -gil < wip([f], [gJ)) < wi'l]) < E.

THEOREM 3.2. The metric space ofequivalence classes ofCM[O, 1] is arcwise
connected and locally arcwise connected, but it is not compact.

Proof, To prove that the space is arcwise connected, it will suffice to prove
that the metric space of canonical functions is arcwise connected. Suppose
that f and g are two distinct canonical functions, and let f", = (1 - rx)1+ rxg
for every rx E [0,1]. Then it is clear that each/", is a canonical function. More
over, fo = f and fl = g. The mapping rx -+ f", is continuous at each point of
[0,1], is one-to-one, and, consequently, is a homeomorphism of [0,1] onto
{f",:0 < rx < I}, since [0,1] is compact. Moreover, if Iii-gil < E, then
III - f",11 = Irxl'lll- gil < rxE < E whenever 0< rx < 1; this proves that the
metric space of canonical functions is locally arcwise connected.

To prove that this space is not compact, consider the sequence of functions
flof2,13, ... where, for each positive integer n, !nCO) = 0, !net) = 1 - 2-n,

!n(l) = 1, and!n is linear on each of the intervals [O,t] and [t, 1]. Then each!n
is a canonical function. If the metric space of canonical functions were com-
pact, then some subsequence!n1,!n2 ,!n3 , ... of the sequencefloh,13, would
converge to a canonical function f, A fortiori, !n1Ct),!n2Ct),!n

3
Ct), would

converge to f(t), which is impossible, since !nk(t) -+ 1 as k -+ <Xl and
fCt) </(1) = 1.
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THEOREM 3.3. In the metric space of equivalence classes of CM[O, 1], no
nonempty open set has a compact closure.

Proof. Suppose that G is a nonempty open subset of the metric space of
canonical functions whose closure G is compact. Let f belong to G; and let
dO < e < 1) be such that U(f, e) <;;; G, where U(f, e) denotes the set of aU
canonical functions g for which Ilf - gil < e.

Let g = -HI + f-l(1- e)}; and consider the sequence of functions grog2,
g3"" where, for each positive integer n, gnCx) = f(x) if 0 < x </-1(1 - <:),
gn(g) = I - E2-n, gn(1) = 1, and gn is linear on each of the intervals
U-1(1-e),g] and [g,I]. Then gn belongs to U(f,e) (11=1,2, ...). Let
gnl,gn2,gn3'''' be a subsequence of gbg2,g3,'" converging to a point g in G.
Thus, limk .... "'gnkW = g(g) < 1 = limk .... "'gnk(g), a contradiction.

COROLLARY 3.1. The metric space of equivalence classes of CM[O, 1] is not
locally compact.

COROLLARY 3.2. In the metric space ofequivalence classes ofCM[O, 1], every
compact set is nowhere dense.

Proof Let C be a compact subset of the space. The interior of C must be
empty, by Theorem 3.3, since it is open and its closure is compact.

We note that the homeomorphismf->- [f] is not isometric; in fact, it is not
even uniformly continuous, as the following example shows. For each positive
integer n, let fn be'the function with domain [0,1] such that fr'(O) = 0, lnG-) =
1 - 2-n,.!n(I) = 1, and such that};. is linear on [O,t] and on [!, 1]. Ifm > n;;;. 1,
then 111m - fnll < 2-n ; but, by Lemma 3.1, P([fm], [fnD ;;;.llf;;;1 - /;111, and a
simple calculation shows that Ilf;;;1 - f;;-111 ;;;.If;;;I(1 - 2-m) - f;;I(I- 2-m)! =
to - 2n

-
m

) ;;;. t·

THEOREM 3.4. The metric space ofequivalence classes ofCM[O, 1] is bounded
and has diameter 1, but it is not totally bounded. Infact, if 0 < e < 1, then the
space contains no e-net.

Proof That the diameter is 1 can be shown by using the second inequaiity of
Lemma 3.1. Suppose that 0< e < 1. Then, given any finite set {[II], [/2], .. 0'
[fn]} of equivalence classes in CM[O,I], we shall prove that there exists a
function f E CM[O, 1] such that p([f], Lh]);;;' e for each k = 1,2, .. .,n. We
assume, without loss of generality, that each h is canonicaL For each
k = 1,2, .. .,n, let Sk be such that 0< Sk < 1 and f/;1 (x) < to- e) whenever
0< x < Ok' Let S = min {Sk:k = 1,2, . ..,n}. Let h be the function with domain
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[0,1] such that h(O) = 0, h(1) = 1, h(o) = 10 +t(1- 10), and such that h is linear
on [0,0] and on [0,1]. Letf=h-1• Then, according to Lemma 3.1, for each
k= 1,2, ...,n,

p([f], LId);;. IIf-1 - f;111

= Ilh-f;11I

;;. h(o) - f; 1(0)

> 10 +t(1 - 10) - t(1 - 10)

=10.

4. DETERMINATION AND ESTIMATION OF DISTANCES

We now consider the question of determining explicitly the distance
p([f], [g]) when the functions f and g are specified. We also consider the
question of estimating the distance when the functions satisfy certain smooth
ness conditions.

For certain special functionsj, g, the distance p([f]), [g]) can be determined
at once from known complements of classical inequalities. We mention just
one example. Shisha and Mond ([3], p. 301) have proved

THEOREM 4.1. Let qhq2," .,qn be positive numbers with 2:j=1 qj = 1, let
0< a < b, y = bfa, and let a~xj~ b U= 1,2, ...,n). Then

±qjXj - (± qjXjl)-1 ~ (b1/2 _ aI/2)2.
j=1 j~1

Equality holds ifandonly ifthere exists a subsequence Uh jz, ..., jp) of(I, 2, ...,n)
such that 2:::'=1 qjm = (1 +y-1/2)-I, Xjm = b (m = 1,2, ...,p), andxj = aforevery
j distinct from all jm'

This, in conjunction with the familiar fact that a (weighted) harmonic
mean never exceeds the corresponding arithmetic mean, yields at once the
following

COROLLARY 4.1. Let 0 < a < b, and let f(t) = t, get) = t-1, a ~ t ~ b. Then
p([f], [g]) =;' (b 1/2 - aI/2)2.

Next, we estimate p([f], [g]) in several ways.

THEOREM 4.2. Iff and g are canonical functions and iff- 1 has a bounded
derivative on [0,1], then p([f], [g]) ~ 2I1U-1)'11'llf- gil. (Here and below, first
and second derivatives at end points mean onesided derivatives.)
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Proof. According to Lemma 3.1, p([f], [g]) « 2Wf-1([lf- giD. The desired
conclusion follows at once from the mean-value theorem.

THEOREM 4.3. Iff, g E CM[a,b], then

p([f], [g) « tIlCf-1)'IJ-IICf 0 g-!)"I! 'Ig(b) - g(a)I2,

provided the right-hand side of the inequality exists.

Proof. Let 12 = fo g-l, let n> I, let x = (Xt>X2'" .,xII) and q = (Qi>Q2,.' .,qJ
be admissible, and let)'j = g(Xj) (j = 1,2, .. .,n). By the mean-value theorem,
for some IX in the open intervaljoiningf(a) tof(b), we have

Mix,q) - Mg{x,q) = f-t~ qi/(XJ} - f- l [12 ttl qjg(Xj)})

=Cf-l)'(IX)L~1 qi/(Xj)-h{JI qjg(Xj)}]

Using the mean-value theorem a second time, we conclude that there exist
points ZhZ2,' ",ZII in the open interval joining g(a) to g(b), such that

+...

+ q,,{-qlYl - Q2Y2 - ..• + (l-qll)YII}h' (z,,)]

= Cf-l), (IX) [ql{qiYl - )'2) + ... +qnCYI - YII)}h'(Zl)

+q2{q I (Y2 -)'1) + ... +qnCY2 - y,,)}h'(Z2)

+ ...

+q"{ql(Y,, - )'1) + ... +q"-I(Y,, - YII-I)} h' (z,JJ

= (/-1)' (IX) L q;qlYi - Yj) {h'(z;) - h'(zj)}'
l~i<J~n
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Using the mean-value theorem a third time, we conclude that there exist
points wi) (1 .:;;; i <j.:;;; n) in the open interval joining g(a) to g(b), such that

Consequently,

Next, let us prove that 21",i<j",n qi"qj < t. By Cauchy's inequality,

(

n )2 n

1 = j~1 l'qj .:;;;n j~ q/.

Thus,

n 1
2: q/;p-.

j=1 n

Therefore,

This establishes Theorem 4.3 if the multiplicative factor t is replaced by t.
To show that the multiplicative factor can be taken to be t, we prove first

LEMMA 4.1. Suppose that n> 1, A < B, qj > 0 (j = 1,2, .. o,n), 21=1 qj = 1,
andA.:;;; Yj .:;;;B(j=1,2, ... ,n).Then

2 qiqiYi - Yj).:;;;HB-A).
l:::;;i<j~n

Equality holds if and only if there exists an integer J such that 1.:;;; J < n,
ql +q2 + ... +qJ=qJ+l + ... +qR> Y1 = Y2 = ... = YJ=B, and YJ+l = ... =
Yn=A.
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Proof 2.1;<; kj;;;n q,qlY, - Y) = 2.i=1 IXj Yj where

IX I =ql(q2 +q3 +q4 + ... +qn),

!X2 = qi-ql + q3 + q4 + + q,,),

1X3 =ql-ql -q2 +q4 + +qn),

Note that IXI > 0, IXn < O. Moreover, if IXj < 0 for somej < n, then O(J+l < 0,
since

This proves that there exists an integerJ, I < J < n, such that IXj > 0 ifj < J, and
r:l.j < 0 ifj>J. Let Y/ = B ifj <J, Y/ = A ifj>J. Then, clearly,

n

< 2. !Xj Y/
j~1

J "
= 2. 2. q,qiB - A)

,=1 j~J+I

<iCB-A),

as desired. If equality holds, ql + q2 + ... + qJ = qJ+! + ... +q" = t. Then
rkJ = ql > 0; and, hence, Y I = Y2 = '" = YJ = Band YJ+l = ... Yn = A. The
sufficiency of the condition for equality also follows easily.

Returning to the proof of Theorem 4.3, let (k l ,k2, ...,k") be a permutation
of(1,2, ...,n) such thatYk1 > Yk2'" >Yk.' Then

!Mix, q) - Mg(x,q)1

< 11(/-1)'11'11(/0 g-I)"II'jg(b) - g(a)j 2. qk;qkj(Yk; - Ykj)
1 :r;;;i<j~n
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COROLLARY 4.2./ff, g E CM[a,b], then

p([f], [g]) ~~!IJ,II'II:, (~:rII'lg(b) - g(a)I2,

provided the right-hand side of the inequality exists.

Proof This follows at once from the facts that

and

(f-I)' 1
= I' of 1

-1" (g' 0 g-l) (f" 0 g-l) - (f' 0 g-I) (g" 0 g-I)
(f 0 g ) = (g' 0 g 1)3

COROLLARY 4.3./ff, g E CM[a,b], then

perf]), [g]) ~ 1[l(f-1)'1I' [[(f 0 g-I)'II" g(b) - g(a)I

= ~IIJ,II'II~:II"g(b) -g(a)l,

provided that all expressions involved exist.

Proof In the proof of Theorem 4.3, note that Ih'(zj) - h'(Zj)I~ 21[h'll. Then
use the fact that (f 0 g-l)' = (I' 0 g-I)/(g' 0 g-I).

Remarks. (1) In connection with Theorem 4.3, we note that, if F,..., f
and G,..., g, then, as one would expect, and as a straightforward calculation
shows,

II(F-1)'1I'II(F 0 G-l)"[I'IG(b) - G(a)j2

= 1I(f-I)'II'II(f 0 g-I)"[I'1 g(b) - g(a)I2.

(2) If/(t) = t and get) = t l / 2 for each t E [0,1], then

211(f-I)'II'lIf- gil =1 = til (f-I)'[!. 11(/0 g-I)"II'lg(l) - g(0)1 2
•

In this case, Theorems 4.2 and 4.3 give the same estimate. From Lemma 3.1
we conclude that p([f], [g]);> 1//-1 - g-111 = t.

(3) Leth(t) = tsine-TrtI2) for each t E [0,1]. Thenh(O) = 0, h(l) = 1, and

h'(t) = t ~cos (~t ) + sin (~t ) > 0
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if 0 < t < 1. Thus, h is a canonical function, and so is its inverse. Letf(t) = t
and get) = h-1(t) throughout [0,1]. Then IIU-1)'11 = 1, and

U 0 g-I)" (t) == h"(t)

== -t (1f sin (1 t) + 7TCOS (~t).
Since

hfll(t)=-t(~r cos(1t)-(~fSin(~t)- ~2 sin(1t)<0

if 0 < t < 1, it follows that [[U 0 g-I)"[[ = 7T. Hence,

-1:[\U-1)'11'IIUo g-l)"[['!g(l) - g(O)J2 =~.

In this case, 2[\U-1)'[['[lf- gil is not easy to evaluate. Thus, Theorem 4.3 is
sometimes easier to use than Theorem 4.2.

(4) If f(t) = t and h(t) = t(t 3 + 2t) for each t E [0,1], and if g = h-1,
then -1:IIU-1)'1I·!!Uog-1)"11·!g(1)-g(0)1 2 =t. Next, let us prove that
IIf- g[[ = tv't. Clearly, g-l(t) = t(t 3 + 2t) < t if 0 < t < L Consequently,
f(t) = t < get) throughout [0,1]. Moreover, g(O) - f(O) = gel) - /(1) = 0, and
(djdt) [g(t) - I(t)] = 0 if and only if g'(t) = 1. But t(g3(t) +2g(t)] == t, and so
t[3g2(t)g'(t) + 2g'(t)] == 1. IfO < t < 1 and g'(t) = 1, then t[3g2(t) + 21 = 1,

get) = v't, and t = t[(v'~)3 +2vt] = iV!. Consequently, III- g[1 must be

equal to g(ivt) - I(ivt) = vt - ivt = tv!. Hence,

-1:[IU-1)'[I'IIU 0 g-l)"II'!g(1) - g(0)j2 = 1-
>~v.i9 3

= 2!!U-1)'[i'1I1- gil;

and, in this case, Theorem 4.2 gives a sharper estimate then Theorem 4.3.

5. SOME FURTHER REMARKS

Let C[O, 1] denote, as usual, the metric space of all continuous, real-valued
functions with domain [0,1]. Since every subset of a separable metric space is
separable, it follows that the metric space of all canonical functions is, like
C[O, 1], separable. Hence, Corollary 2.1 is a consequence of Theorem 3.1;
and, in a sense, Theorem 2.2 is redundant. However, our motivation for
including Theorem 2.2 was that it raises a number of interesting questions
belonging to approximation theory.
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Also, a natural question to ask is, whether or not the metric space of equi
valence classes of CM[O, 1] is complete. If it is not, how does its completion
compare with that of the metric space of canonical functions?

6. SIMULTANEOUS REDUCTION OF GENERALIZED MEANS

In the remark following Definition 2.3, we asserted that the supremum in
that definition is actually attained. This assertion is an immediate consequence
of the following Theorem 6.1, since the function

If-l{Ql f(Xl ) + Qlf(Xl)} - g-l{Qlg(Xl) + Qlg(Xl)}/

is continuous on the compact subset

{(Xl' Xl' Ql' Ql):a.,;; Xl .,;;b,a.,;; Xl .,;;b, Ql;;;' 0, Ql ;;;.0, Ql + Ql = 1}

of Euclidean 4-space.

THEOREM 6.1. Suppose that f,gECM[a,b]. If X=(X/>Xl""'Xn) and
q = (ql>ql," .,qn) are admissible, then there exist admissible X = (Xl> Xl) and
Q = (Q/> Ql) such that Mf(x,q) = MiX, Q) and Mg{x,q) = Mg(X, Q).

Proof. Note that

(
n n ) n

A = j~l qj f(xj), j~l qjg(Xj) = j~l qlf(xj),g(Xj))

is a point in the convex hull of the curve r= {(f(x),g(x)):a.,;; x.,;; b}. Also,
note that r is a connected subset of the plane. IfA lies on r, then it is equal to
(f(X),g(X)) for some XE [a,b]. In this case, let Xl = Xl = X and Ql =
Q2=t.
If A ¢ r, then, according to an extension of Caratheodory's theorem

(cf. [4], p. 35), there exist two distinct points in r, say, (f(Xl),g(Xl )) and
(f(Xl ),g(X2)), where Xl> X2 E [a, b], such that the line segment joining them
contains A. Thus, there exist positive numbers Ql> Ql' with Ql + Q2 = 1,
such that

n

Ql f(X\) + Q2 f(X2) = 2: qj f(x)
j~l

and
n

Qlg(Xl) + Q2g(X2) = 2: qjg(x).
j=l

This completes the proof of the theorem.

Remarks. (1) Theorem 6.1 can obviously be generalized.
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(2) It is not possible to strengthen the conclusion ofTheorem 6.1 by asserting
that Xl can always be taken to be either a or b. To see this, letf(x) = x through
out [0,1], let g be the function whose graph is shown in Figure 1, and consider
the point P, which is in the convex hull of the curve {(f(x),g(x»:O,;;;; x,;;;; I},

Figure 1

(3) The proof of Theorem 4.3 can be substantially simplified by using
Theorem 6.1.

(4) The following is a simple application of Theorem 6.1. IfO < a,;;;; Xl';;;; b,
a,;;;; X 2 ,;;;; b, Ql > 0, Q2 > 0, and Ql + Q2 = 1, then

(Ql Xl + Q2 X2)(QI XlI + Q2 Xi: I) = Q12+ Q22+ Ql Q2 (~: + ~~)

= (Ql + Q2)2 + Ql Q2 (~~ + ~: - 2)
= 1+ Q! Q2 (Xl + X2

- 2)
.X2 Xl /

1 (a b \ (a + b)2,;;;; 1+ 4. b+a- 2) = 4ab -.

It now follows from Theorem 6.1 that, if 0 < a,;;;; Xj';;;; b (j = 1,2, .. .,n),
qj > °(j = 1,2, .. .,n), and 2.j~1 qj = 1, then

(~ qk xk) (Jl ;:) ,;;;; (a::z:)2 ,
a well-known inequality due to Kantorovich.
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